Claudia Kutter and Vicente Pelechano García appointed Wallenberg Academy Fellows
Two MTC researchers have been appointed Wallenberg Academy Fellows, an appointment that includes funding for between 5 to 9 million SEK per researcher for a five year period
Claudia Kutter
There are many known risk factors for liver cancer, particularly chronic virus infections (hepatitis B and C), alcoholism and obesity. It is now the sixth most common form of cancer worldwide and the number of cases is increasing rapidly as a consequence of harmful lifestyle and environmental factors, among other things.
To better understand how liver cancer develops, Dr. Claudia Kutter, University of Cambridge, UK, will make detailed studies of the intricate mechanisms governing which genes in a cell are activated. People carry around 1500 proteins that form complexes with RNA molecules and regulate gene activity. Claudia Kutter will use the latest technology to map the interaction between RNA-binding proteins and RNA molecules, and how this affects gene expression in healthy and diseased cells.
Given that this disease is one of the deadliest forms of cancer, the project’s long-term aim is to find new pharmaceutical targets. As a Wallenberg Academy Fellow, Claudia Kutter will work at Karolinska Institutet’s Department of Microbiology, Tumor and Cell Biology. She is also a faculty member of SciLifeLab.
Read more about Claudias research here
Vicente Pelechano García
Bet-hedging is a term used by evolutionary biologists to describe the ability of microorganisms to adapt to unpredictable surroundings, where genetically equivalent organisms can develop different characteristics. For example, in a bacterial infection, some of the bacteria may develop resistance to a particular antibiotic, despite genetic analysis showing that they should be responsive to it. Researchers have also recently shown that similar processes can explain some cancer cells’ resistance to chemotherapy.
Dr. Vicente Pelechano García, Karolinska Institutet, will study what allows cells to react differently to a particular pharmaceutical. As a Wallenberg Academy Fellow, he will investigate subtle differences in the packaging of the long strands of DNA and how this affects the expression of various genes. Differences in gene expression may also occur when a gene is copied to messenger RNA, which in turn affects the shape of the protein that is formed from the gene. A better understanding of these fundamental processes in the cell is necessary for researchers to be able to develop treatments that are effective against all cancer cells and microorganisms – even those that are most resilient.